dianas 5 (1) Zarka-Trigo y Roldan 2016 Señalización celular post-eyaculación de los espermatozoides de mamíferos.

dianas 5(1) > Zarka-Trigo y Roldan

dianas | Vol 5 Num 1 | marzo 2016 | e20160353

Señalización celular post-eyaculación de los espermatozoides de mamíferos.

Museo Nacional de Ciencias Naturales, CSIC. Calle de José Gutiérrez Abascal, 2, 28006 Madrid.

adr.zarkajr@gmail.com

I Congreso de Señalización Celular, SECUAH 2016
Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá (UAH). Alcalá de Henares, Madrid (Spain)

Resumen

Los espermatozoides son un tipo celular muy excepcional en el campo de la señalización celular, debido a que son células germinales y poseen el núcleo haploide, muy compactado y aparentemente inactivo. A diferencia de en otras especies animales, las hembras de mamíferos no disponen de una espermateca que mantenga a los espermatozoides con vida hasta el momento de la fertilización. Por ello, y para evitar la muerte celular prematura, los espermatozoides de mamíferos se almacenan en el epidídimo sin estar completamente maduros. Por lo tanto estos espermatozoides requieren de una fase de maduración post-eyaculado para desarrollar su potencial fertilizador [1, 2]. A este proceso se le denomina capacitación, e incluye una serie de cambios metabólicos, fisiológicos y funcionales fuertemente regulados por diversas vías de señalización [1, 3-5]. Entre los cambios fisiológicos más notables se encuentran la reorganización de la membrana plasmática, que otorga al espermatozoide la capacidad de reconocer al ovocito y fusionarse con él [5, 6], cambios en el patrón de natación (hiperactivación) del espermatozoide [7, 8] y la preparación del espermatozoide para la reacción acrosómica, previa a la fusión del mismo con el óvulo [9, 10]. El estudio de la señalización celular de la capacitación está en auge, y varios grupos de investigación están demostrando las complejas vías de señalización de este importante proceso. Se ha determinado que la capacitación requiere inicialmente la pérdida de diversas moléculas de la superficie espermática, como son el colesterol, determinadas proteínas y de otras moléculas (Zn, Sg), permitiendo con ello la reorganización de la membrana plasmática y la aparición de proteínas transmembrana que intervienen en la señalización celular [6, 11, 12]. En segundo lugar se da la aparición de AMPc por medio de la activación de la adenilato ciclasa y por ello, la activación de proteínas kinasas (PKA y PKC) [1, 12-16]. La activación de proteínas kinasas es responsable de la posterior activación de diversas cascadas de señalización como las MAP-Kinasas, AKAPs, Pi3K/Akt, ERK, Ras/Raf, etc [17, 18]. Las publicaciones más recientes sugieren la participación de las especies reactivas derivadas del oxígeno (ROS) y derivadas del nitrógeno (NOS), como segundos mensajeros de la señalización celular de la capacitación [3, 17-20]. También se indica que el parecido de la vía de señalización de la capacitación con las vías de la señalización propias de la apoptosis de células somáticas, define una estrategia en la que la programación celular típica de los espermatozoides fuera principalmente su muerte, salvo que el encuentro con ciertas señales del aparato reproductor femenino conduzca a la adquisición de su potencial fertilizador y la fecundación del óvulo [21].


  1. P. E. Visconti, J. L. Bailey, G. D. Moore, D. Pan, P. Olds-Clarke, and G. S. Kopf. 1995 Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation., Development 121(4):1129–37.

  2. H. Pons-Rejraji, J. L. Bailey, and P. Leclerc. 2009 Modulation of bovine sperm signalling pathways: correlation between intracellular parameters and sperm capacitation and acrosome exocytosis. Reprod. Fertil. Dev. 21(4):511–24.

  3. S. S. Du Plessis, A. Agarwal, J. Halabi, and E. Tvrda. 2015 Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J. Assist. Reprod. Genet. 32(4):509–20

  4. L. R. Fraser, S. Adeoya-Osiguwa, R. W. Baxendale, S. Mededovic, and O. O. Osiguwa. 2005. First messenger regulation of mammalian sperm function via adenylyl cyclase/cAMP. J. Reprod. Dev. 51(1):37–46.

  5. a Boerke, P. S. Tsai, N. Garcia-Gil, I. a Brewis, and B. M. Gadella. 2008. Capacitation-dependent reorganization of microdomains in the apical sperm head plasma membrane: functional relationship with zona binding and the zona-induced acrosome reaction. Theriogenology 70 (8):1188–96.

  6. C. E. Au, L. Hermo, E. Byrne, J. Smirle, A. Fazel, R. E. Kearney, C. E. Smith, H. Vali, J. Fernandez-Rodriguez, P. H. G. Simon, C. Mandato, T. Nilsson, and J. J. M. Bergeron. 2015. Compartmentalization of membrane trafficking, glucose transport, glycolysis, actin, tubulin and the proteasome in the cytoplasmic droplet/Hermes body of epididymal sperm., Open Biol. 5(8).

  7. V. J. Kay and L. Robertson. 1998. Hyperactivated motility of human spermatozoa: a review of physiological function and application in assisted reproduction., Hum. Reprod. Update 4(6) :776–86.

  8. H. Ho and S. S. Suarez. 2001 Hyperactivation of mammalian spermatozoa?: function and regulation, Vol 122 (4):519–526.

  9. H. Breitbart and B. Spungin. 1997. The biochemistry of the acrosome reaction., Mol. Hum. Reprod. 3(3):195–202.

  10. E. De Lamirande, P. Leclerc, C. Gagnon, and E. de Lamirande. 1997. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization., Mol. Hum. Reprod. 3(3):175–94.

  11. N. L. Cross. 1998. Role of cholesterol in sperm capacitation., Biol. Reprod. 59(1):7–11.

  12. J. E. Osheroff, P. E. Visconti, J. P. Valenzuela, A. J. Travis, J. Alvarez, and G. S. Kopf. 1999. Regulation of human sperm capacitation by a cholesterol efflux-stimulated signal transduction pathway leading to protein kinase A-mediated up-regulation of protein tyrosine phosphorylation. Mol. Hum. Reprod. 5 (11):1017–26.

  13. F. Urner, G. Leppens-Luisier, and D. Sakkas. 2001. Protein tyrosine phosphorylation in sperm during gamete interaction in the mouse: the influence of glucose., Biol. Reprod. 64(5),:1350–1357.

  14. B. Marquez and S. S. Suarez. 2004. Different signaling pathways in bovine sperm regulate capacitation and hyperactivation., Biol. Reprod. 70(6):1626–33.

  15. H. Breitbart and Z. Naor. 1999. Protein kinases in mammalian sperm capacitation and the acrosome reaction., Rev. Reprod. 4(3):151–9.

  16. R. K. Naz and P. B. Rajesh. 2004. Role of tyrosine phosphorylation in sperm capacitation / acrosome reaction., Reprod. Biol. Endocrinol. 2 (1) p. 75.

  17. C. O’Flaherty. 2015. Redox regulation of mammalian sperm capacitation., Asian J. Androl. 17(4):583–90.

  18. O. Flaherty, E. De Lamirande, and C. Gagnon. 2006. Reactive oxygen species modulate independent protein phosphorylation pathways during human sperm capacitation. Free Radic Biol Med. 40 (6):1045–1055, 2006.

  19. H. D. Guthrie and G. R. Welch. 2012. Effects of reactive oxygen species on sperm function. Theriogenology 78(8):1700–8.

  20. J. Fujii and S. Tsunoda. 2011. Redox regulation of fertilisation and the spermatogenic process., Asian J. Androl. 13(3):420–3.

  21. R. J. Aitken, M. A. Baker, and B. Nixon. 2015. Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress?, Asian J. Androl. 17(4):633–9.

Cita: Zarka Trigo, Daniel; Roldan, Eduardo (2016) Señalización celular post-eyaculación de los espermatozoides de mamíferos. Actas del I Congreso de Señalización Celular, SECUAH 2016. Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá (UAH). Alcalá de Henares, Madrid (Spain). dianas 5 (1): e20160353. ISSN 1886-8746 (electronic) journal.dianas.e20160353 https://dianas.web.uah.es/journal/e20160353. URI http://hdl.handle.net/10017/15181

Copyright: © Zarka-Trigo D, Roldan E. Algunos derechos reservados. Este es un artículo open-access distribuido bajo los términos de una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. http://creativecommons.org/licenses/by-nc-nd/4.0/

Licencia de Creative Commons

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *